反射实验中,为什么除了反射角方向,其他方向也能接收到微波信号?

2024-05-15

1. 反射实验中,为什么除了反射角方向,其他方向也能接收到微波信号?

那是因为,实际的反射面不可能是完美的平面,总有些表面缺陷,当微波在这上面反射时,就会反射到未知的方向了。

反射实验中,为什么除了反射角方向,其他方向也能接收到微波信号?

2. 声呐为什么用超声波不用次声波?

由于其他探测手段的作用距离都很短,光在水中的穿透能力很有限,即使在最清澈的海水中,人们也只能看到十几米到几十米内的物体;电磁波在水中也衰减太快,而且波长越短,损失越大,即使用大功率的低频电磁波,也只能传播几十米。
然而,声波在水中传播的衰减就小得多,在深海声道中爆炸一个几公斤的炸弹,在两万公里外还可以收到信号,低频的声波还可以穿透海底几千米的地层,并且得到地层中的信息。在水中进行测量和观察,至今还没有发现比声波更有效的手段。

扩展资料:
可用来探测水下目标,并测定其距离、方位、航速、航向等运动要素。主动声呐发射某种形式的声信号.利用信号在水下传播途中障碍物或目标反射的回波来进行探测。由于目标信息保存在回波之中,所以可根据接收到的回波信号来判断目标的存在,并测量或估计目标的距离、方位、速度等参量。
传统上潜艇安装声呐的主要位置是在最前端的位置,由于现代潜艇非常依赖被动声呐的探测效果,巨大的收音装置不仅仅让潜艇的直径水涨船高,原先在这个位置上的鱼雷管也得乖乖让出位置而退到两旁去。
参考资料来源:百度百科-声呐

3. 声呐的来历

声呐 
开放分类: 军事、科技、声波、电子产品、海军装备

 目录
• 释义与简介 
• 工作的原理 
• 结构与分类 
• 安装及运用 
• 影响的因素 

 



释义与简介
[编辑本段]
  声呐就是利用水中声波对水下目标进行探测、定位和通信的电子设备,是水声学中应用最广泛、最重要的一种装置。它是SONAR一词的“义音两顾”的译称(旧译为声纳),SONAR是Sound Navigationand Ranging(声音导航测距)的缩写。

  声呐技术至今已有100年历史,它是1906年由英国海军的刘易斯·尼克森所发明。他发明的第一部声呐仪是一种被动式的聆听装置,主要用来侦测冰山。这种技术,到第一次世界大战时被应用到战场上,用来侦测潜藏在水底的潜水艇。 

  目前,声呐是各国海军进行水下监视使用的主要技术,用于对水下目标进行探测、分类、定位和跟踪;进行水下通信和导航,保障舰艇、反潜飞机和反潜直升机的战术机动和水中武器的使用。此外,声呐技术还广泛用于鱼雷制导、水雷引信,以及鱼群探测、海洋石油勘探、船舶导航、水下作业、水文测量和海底地质地貌的勘测等。

  和许多科学技术的发展一样,社会的需要和科技的进步促进了声呐技术的发展。

工作的原理
[编辑本段]
  声波是观察和测量的重要手段。有趣的是,英文“sound”一词作为名词是“声”的意思,作为动词就有“探测”的意思,可见声与探测关系之紧密。

  在水中进行观察和测量,具有得天独厚条件的只有声波。这是由于其他探测手段的作用距离都很短,光在水中的穿透能力很有限,即使在最清澈的海水中,人们也只能看到十几米到几十米内的物体;电磁波在水中也衰减太快,而且波长越短,损失越大,即使用大功率的低频电磁波,也只能传播几十米。然而,声波在水中传播的衰减就小得多,在深海声道中爆炸一个几公斤的炸弹,在两万公里外还可以收到信号,低频的声波还可以穿透海底几千米的地层,并且得到地层中的信息。在水中进行测量和观察,至今还没有发现比声波更有效的手段。  

结构与分类
[编辑本段]
  声呐装置一般由基阵、电子机柜和辅助设备三部分组成。基阵由水声换能器以一定几何图形排列组合而成,其外形通常为球形、柱形、平板形或线列行,有接收基阵、发射机阵或收发合一基阵之分。电子机柜一般有发射、接收、显示和控制等分系统。辅助设备包括电源设备、连接电缆、水下接线箱和增音机、与声呐基阵的传动控制相配套的升降、回转、俯仰、收放、拖曳、吊放、投放等装置,以及声呐导流罩等。

  换能器是声呐中的重要器件,它是声能与其它形式的能如机械能、电能、磁能等相互转换的装置。它有两个用途:一是在水下发射声波,称为“发射换能器”,相当于空气中的扬声器;二是在水下接收声波,称为“接收换能器”,相当于空气中的传声器(俗称“麦克风”或“话筒”)。换能器在实际使用时往往同时用于发射和接收声波,专门用于接收的换能器又称为“水听器”。换能器的工作原理是利用某些材料在电场或磁场的作用下发生伸缩的压电效应或磁致伸缩效应。

  声呐的分类可按其工作方式,按装备对象,按战术用途、按基阵携带方式和技术特点等分类方法分成为各种不同的声呐。例如按工作方式可分为主动声呐和被动声呐;按装备对象可分为水面舰艇声呐、潜艇声呐、航空声呐、便携式声呐和海岸声呐等。

  主动声呐:主动声呐技术是指声呐主动发射声波“照射”目标,而后接收水中目标反射的回波以测定目标的参数。大多数采用脉冲体制,也有采用连续波体制的。它由简单的回声探测仪器演变而来,它主动地发射超声波,然后收测回波进行计算,适用于探测冰山、暗礁、沉船、海深、鱼群、水雷和关闭了发动机的隐蔽的潜艇;

  被动声呐:被动声呐技术是指声呐被动接收舰船等水中目标产生的辐射噪声和水声设备发射的信号,以测定目标的方位。它由简单的水听器演变而来,它收听目标发出的噪声,判断出目标的位置和某些特性,特别适用于不能发声暴露自己而又要探测敌舰活动的潜艇。

安装及运用
[编辑本段]
  传统上潜艇安装声呐的主要位置是在最前端的位置,由于现代潜艇非常依赖被动声呐的探测效果,巨大的收音装置不仅仅让潜艇的直径水涨船高,原先在这个位置上的鱼雷管也得乖乖让出位置而退到两旁去。

  其他安装在潜艇上的声呐型态还包括安装在艇身其他位置的被动声呐听音装置,利用不同位置收到的同一讯号,经过电脑处理和运算之后,就可以迅速的进行粗浅的定位,对于艇身较大的潜艇来说比较有利,因为测量的基线较长,准确度较高。

  另外一种声呐称为“拖曳声纳”,因为这种声呐装置在使用时,以缆线与潜艇连接,声呐的本体则远远的拖在潜艇的后面进行探测,拖曳声呐的使用大幅强化潜艇对于全方位与不同深度的侦测能力,尤其是潜艇的尾端。这是因为潜艇的尾端同时也是动力输出的部分,由于水流的声音的干扰,位于前方的声呐无法听到这个区域的讯号而形成一个盲区。使用拖曳声呐之后就能够消除这个盲区,找出躲在这个区域的目标。 

影响的因素
[编辑本段]
  影响声呐工作性能的因素除声呐本身的技术状况外,外界条件的影响很严重。比较直接的因素有传播衰减、多路径效应、混响干扰、海洋噪声、自噪声、目标反射特征或辐射噪声强度等,它们大多与海洋环境因素有关。例如,声波在传播途中受海水介质不均匀分布和海面、海底的影响和制约,会产生折射、散射、反射和干涉,会产生声线弯曲、信号起伏和畸变,造成传播途径的改变,以及出现声阴区,严重影响声呐的作用距离和测量精度。现代声呐根据海区声速--深度变化形成的传播条件,可适当选择基阵工作深度和俯仰角,利用声波的不同传播途径(直达声、海底反射声、会聚区、深海声道)来克服水声传播条件的不利影响,提高声呐探测距离。又如,运载平台的自噪声主要与航速有关,航速越大自噪声越大,声呐作用距离就越近,反之则越远;目标反射本领越大,被对方主动声呐发现的距离就越远;目标辐射噪声强度越大,被对方被动声呐发现的距离就越远。

声呐的来历

4. 如何识别和区分目标回波和水池池壁反射波?

1、看回波的深度是否等于水池池壁的深度;2、移动探头看是否所有地方都有。如果满足这两个条件,基本可以判定是水池池壁反射波。

5. 声呐是利用什么传递信息

作为一种声学探测设备,主动式声呐是在英国首先投入使用的,不过英国人把这种设备称为"ASDIC"(潜艇探测器),美国人称其为"SONAR",后来英国人也接受了此叫法。
  由于电磁波在水中衰减的速率非常的高,无法做为侦测的讯号来源,以声波探测水面下的人造物体成为运用最广泛的手段。无论是潜艇或者是水面船只,都利用这项技术的衍生系统,探测水底下的物体,或者是以其作为导航的依据。
作远距离传输的能量形式。于是探测水下目标的技术——声呐技术便应运而生。 声呐技术至今已有100年历史,它是1906年由英国海军的刘易斯·尼克森所发明。他发明的第一部声呐仪是一种被动式的聆听装置,主要用来侦测冰山。这种技术,到第一次世界大战时被应用到战场上,用来侦测潜藏在水底的潜水艇。

声呐是各国海军进行水下监视使用的主要技术,用于对水下目标进行探测、分类、定位和跟踪;进行水下通信和导航,保障舰艇、反潜飞机和反潜直升机的战术机动和水中武器的使用。此外,声呐技术还广泛用于鱼雷制导、水雷引信,以及鱼群探测、海洋石油勘探、船舶导航、水下作业、水文测量和海底地质地貌的勘测等。
和许多科学技术的发展一样,社会的需要和科技的进步促进了声呐技术的发展。[1]俄罗斯海军专门将一艘核子K-403号潜艇改成声呐测试用艇,可见重视程度。
2工作的原理
编辑

声波是观察和测量的重要手段。有趣的是,英文“sound”一词作为名词是“声

声呐模式
”的意思,作为动词就有“探测”的意思,可见声与探测关系之紧密。
在水中进行观察和测量,具有得天独厚条件的只有声波。这是由于其他探测手段的作用距离都很短,光在水中的穿透能力很有限,即使在最清澈的海水中,人们也只能看到十几米到几十米内的物体;电磁波在水中也衰减太快,而且波长越短,损失越大,即使用大功率的低频电磁波,也只能传播几十米。然而,声波在水中传播的衰减就小得多,在深海声道中爆炸一个几公斤的炸弹,在两万公里外还可以收到信号,低频的声波还可以穿透海底几千米的地层,并且得到地层中的信息。在水中进行测量和观察,至今还没有发现比声波更有效的手段。
3结构与分类
编辑

结构

声呐装置一般由基阵、电子机柜和辅助设备三部分组成。基阵由水声换能器以一定几何图形排列组合而成,其外形通常为球形、柱形、平板形或线列行,有接收基阵、发射机阵或收发合一基阵之分。电子机柜一般有发射、接收、显示和控制等分系统。辅助设备包括电源设备、连接电缆、水下接线箱和增音机、与声呐基阵的传动控制相配套的升降、回转、俯仰、收放、拖曳、吊放、投放等装置,以及声呐导流罩等。
换能器是声呐中的重要器件,它是声能与其它形式的能如机械能、电能、磁能等相互转换的装置。它有两个用途:一是在水下发射声波,称为“发射换能器”,相当于空气中的扬声器;二是在水下接收声波,称为“接收换能器”,相当于空气中的传声器(俗称“麦克风”或“话筒”)。换能器在实际使用时往往同时用于发射和接收声波,专门用于接收的换能器又称为“水听器”。换能器的工作原理是利用某些材料在电场或磁场的作用下发生伸缩的压电效应或磁致伸缩效应。
分类

声呐的分类可按其工作方式,按装备对象,按战术用途、按基阵携带方式和技术特点等分类方法分成为各种不同的声呐。例如按工作方式可分为主动声呐和被动声呐;按装备对象可分为水面舰艇声呐、潜艇声呐、航空声呐、便携式声呐和海岸声呐等。
主动声呐:主动声呐技术是指声呐主动发射声波“照射”目标,而后接收水中目标反射的回波以测定目标的参数。大多数采用脉冲体制,也有采用连续波体制的。它由简单的回声探测仪器演变而来,它主动地发射超声波,然后收测回波进行计算,适用于探测冰山、暗礁、沉船、海深、鱼群、水雷和关闭了发动机的隐蔽的潜艇;
被动声呐:被动声呐技术是指声呐被动接收舰船等水中目标产生的辐射噪声和水声设备发射的信号,以测定目标的方位。它由简单的水听器演变而来,它收听目标发出的噪声,判断出目标的位置和某些特性,特别适用于不能发声暴露自己而又要探测敌舰活动的潜艇。
4影响因素
编辑

影响声呐工作性能的因素除声呐本身的技术状况外,外界条件的影响很严重。

可变深度声呐
比较直接的因素有传播衰减、多路径效应、混响干扰、海洋噪声、自噪声、目标反射特征或辐射噪声强度等,它们大多与海洋环境因素有关。例如,声波在传播途中受海水介质不均匀分布和海面、海底的影响和制约,会产生折射、散射、反射和干涉,会产生声线弯曲、信号起伏和畸变,造成传播途径的改变,以及出现声阴区,严重影响声呐的作用距离和测量精度。现代声呐根据海区声速--深度变化形成的传播条件,可适当选择基阵工作深度和俯仰角,利用声波的不同传播途径(直达声、海底反射声、会聚区、深海声道)来克服水声传播条件的不利影响,提高声呐探测距离。又如,运载平台的自噪声主要与航速有关,航速越大自噪声越大,声呐作用距离就越近,反之则越远;目标反射本领越大,被对方主动声呐发现的距离就越远;目标辐射噪声强度越大,被对方被动声呐发现的距离就越远。
5历史沿革
编辑

声呐技术至今已有超过100年历史,它是1906年由英国海军的刘易斯·尼克森所发明。到第一次世界大战时开始被应用到战场上,用来侦测潜藏在水底的潜水艇,这些声呐只能被动听音,属于被动声呐,或者叫做“水听器”。
在1915年,法国物理学家Paul Langevin与俄国电气工程师Constantin Chilowski合作发明了第一部用于侦测潜艇的主动式声呐设备。尽管后来压电式变换器取代了他们一开始使用的静电变换器,但他们的工作成果仍然影响了未来的声呐设计。
1916年,加拿大物理学家Robert Boyle承揽下一个属于英国发明研究协会的声呐项目,Robert Boyle在1917年年中制作出了一个用于测试的原始型号主动声呐,由于该项目很快就划归ASDIC,(反潜/盟军潜艇侦测调查委员会)管辖,此种主动声呐亦被称英国人称为“ASDIC”,为区别于SONAR的音译“声呐”,将ASDIC翻译为“潜艇探测器”。
1918年,英国和美国都生产出了成品。1920年英国在皇家海军HMS Antrim号上测试了他们仍称为“ASDIC”的声呐设备,1922年开始投产,1923年第六驱逐舰支队装备了拥有ASDIC的舰艇。
1924年在波特兰成立了一所反潜学校——皇家海军Ospery号(HMS Osprey),并且设立了一支有四艘装备了潜艇探测器的舰艇的训练舰队。
1931年美国研究出了类似的装置,称为SONAR(声呐)。
6生物“声纳”
编辑

声呐并非人类的专利,不少动物都有它们自己的“声呐”。蝙蝠就用喉头发射每秒10-20次的超声脉冲而用耳朵接收其回波,借助这种“主动声呐”它可以探查到很细小的昆虫及0.1mm粗细的金属丝障碍物。而飞蛾等昆虫也具有“被动声呐”,能清晰地听到40m以外的蝙蝠超声,因而往往得以逃避攻击。然而有的蝙蝠能使用超出昆虫侦听范围的高频超声或低频超声,从而使捕捉昆虫的命中率仍然很高。看来,动物也和人类一样进行着“声呐战”!海豚和鲸等海洋哺乳动物则拥有“水下声呐”,它们能产生一种十分确定的讯号探寻食物和相互通迅。
多种鲸类都用声来探测和通信,它们使用的频率比海豚的低得多,作用距离也远得多。其他海洋哺乳动物,如海豹、海狮等也都会发射出声呐信号,进行探测。

座头鲸,也运用了声原理
海豚声呐的灵敏度很高,能发现几米以外直径0.2mm的金属丝和直径lmm的尼龙绳,能区别开只相差200卜s时间的两个信号,能发现几百米外的鱼群,能遮住眼睛在插满竹竿的水池子中灵活迅速地穿行而不会碰到竹竿;海豚声呐的“目标识别”能力很强,不但能识别不同的鱼类,区分开黄铜、铝、电木、塑料等不同的物质材料,还能区分开自己发声的回波和人们录下它的声音而重放的声波;海豚声呐的抗干扰能力也是惊人的,如果有噪声干扰,它会提高叫声的强度盖过噪声,以使自己的判断不受影响;而且,海豚声呐还具有感情表达能力,已经证实海豚是一种有“语言”的动物,它们的“交谈”正是通过其声呐系统。尤其是仅存于世的四种淡水豚中最珍贵的一种-我国长江中下游的白鳍豚,它的声呐系统“分工”明确,有为定位用的,有为通讯用的,有为报警用的,并有通过调频来调制位相的特殊功能。
终身在极度黑暗的大洋深处生活的动物是不得不采用声呐等各种手段来搜寻猎物和防避攻击的,它们的声呐的性能是人类现代技术所远不能及的。解开这些动物声呐的谜,一直是现代声呐技术的重要研究课题。

声呐是利用什么传递信息

6. 主动声纳回波接收信号频率会变化吗

你好,只要存在相对运动,发射的频率和接收的频率是会产生变化的。

7. 声呐是怎样工作的?

声呐的最基本原理 
水声设备是根据声波可以在水中以一定的速度(海水1500米/秒;淡水1400米/秒)传播较远距离,而且传播时遇到目标后会反射回来的原理进行工作的.最常见的水声导航、通讯设备有:回声侧深仪、各种类型的声呐等. 
声呐是现代大型水面舰艇及潜艇上不可缺少的电子设备之一.声呐的主要功能是:搜索和跟踪水下目标(潜艇、水雷),对目标进行敌我识别,测定水下目标的运动要素,以供反潜武器射击指挥用.其次是水下通讯,探测水雷,探测水下情况保障本舰安全航行. 
潜艇最大的特点是它的隐蔽性,作战时需要长时间在水下潜航,这就决定它不能浮出水面使用雷达观察,而只能依靠声呐进行探测,所以声呐在潜艇上的重要性更为突出,被称为潜艇的“耳目”. 
声呐的工作原理与雷达相同,可以说是工作在音频或超音频频率上的雷达.声呐站的各个组成部分与雷达站的组成极其相似. 
由于声呐工作在超音频频率范围内,它辐射信号的方法与雷达不同,雷达采用金属制成的抛物面天线,而声呐采用水声换能器. 
水生换能器是利用晶体(石英或酒石酸钾钠)压电陶瓷(钛酸钡和锆钛酸铅等)的压电效应或铁镍合金的磁致伸缩效应来进行工作的.所谓压电效应,就是把晶体按一定方向切成薄片,并在晶体薄片上施加压力,在它的两端面上会分别产生正电荷和负电荷.反之在晶体博片上施加拉伸力时,它的两个端面上就会产生与加压力时相反的电荷.与压电效应相反时电致伸缩效应,即在晶体的两个端面上施加交变电压,晶体就会产生相应的机械变形.我们利用电致伸缩效应和压电效应来产生和接收超声波. 
声呐发射超声波时就把超声波振荡电压加在晶体薄片的两个端面上.于是晶体的厚度就会随着超声波振荡电压而变化,产生超声波震动.晶体震动推动周围的水就产生的超声波的辐射. 
超声波传播时遇到目标便产生反射.回波作用在水声换能器的晶体上,由于压电效应水声换能器的两个端面上便可能得到电信号.与雷达天线一样,水声换能器不但要发射和接收超声波信号,而且要有尖锐的方向性,只有这样才能测定目标的方位.声呐设备是利用很多压电晶体组成换能器阵来获得尖锐的方向性的.因此声呐的水声换能器体积较大,一般都安装在舰船艏部的水下部分. 
声呐的工作过程可叙述入下: 
在发射控制器的控制下,发射机产生大功率超声波脉冲振荡,经收发转换装置由水声换能器向某一个方向发射超声波.在这个方向上,超声波遇到目标便反射回来,由水声换能器接收,变成电信号.再经收发转换装置送到接收机放大,最后送到显示器显示目标的方向和距离. 
从工作过程看,发射超声波时发射机工作,接收器不必工作;发射结束后,接收机应立即工作,以便接收由最近目标和最远目标反射回来的超声波.显然发射机和接收机时交替工作的.因此利用收发转换装置可以使接收机和发射机合用一个造价昂贵的水声换能器. 
以上述方式,即声呐发射信号,然后接收由目标反射回来的信号工作的称为主动式声呐.另外,还有一种被动工作方式,即只接收目标本身发出的噪声(如螺旋桨所发出的声音等)来判别目标的方向,又称为噪音侧向声呐.这种声呐不因发射声波而被地方捕获,所以被动工作方式对提高潜艇的隐蔽性有着特殊的意义.

声呐是怎样工作的?