阿基米德的简介

2024-05-12

1. 阿基米德的简介


阿基米德的简介

2. 阿基米德简介

阿基米德简介:
阿基米德(公元前287年—公元前212年),伟大的古希腊哲学家、百科式科学家、数学家、物理学家、力学家,静态力学和流体静力学的奠基人,并且享有“力学之父”的美称,阿基米德和高斯、牛顿并列为世界三大数学家。
阿基米德曾说过:“给我一个支点,我就能撬起整个地球。”
阿基米德确立了静力学和流体静力学的基本原理。给出许多求几何图形重心,包括由一抛物线和其网平行弦线所围成图形的重心的方法。阿基米德证明物体在液体中所受浮力等于它所排开液体的重量,这一结果后被称为阿基米德原理。
他还给出正抛物旋转体浮在液体中平衡稳定的判据。阿基米德发明的机械有引水用的水螺旋,能牵动满载大船的杠杆滑轮机械,能说明日食,月食现象的地球-月球-太阳运行模型。
但他认为机械发明比纯数学低级,因而没写这方面的著作。阿基米德还采用不断分割法求椭球体、旋转抛物体等的体积,这种方法已具有积分计算的雏形。

扩展资料:
阿基米德在几何学方面的成就:

阿基米德在数学上也有着极为光辉灿烂的成就,特别是在几何学方面。
阿基米德的数学思想中蕴涵微积分,阿基米德的《方法论》中已经“十分接近现代微积分”,这里有对数学上“无穷”的超前研究,贯穿全篇的则是如何将数学模型进行物理上的应用。
他所缺的是没有极限概念,但其思想实质却伸展到17世纪趋于成熟的无穷小分析领域里去,预告了微积分的诞生。
阿基米德将欧几里德提出的趋近观念作了有效的运用。他利用“逼近法”算出球面积、球体积、抛物线、椭圆面积,后世的数学家依据这样的“逼近法”加以发展成近代的“微积分”。阿基米德还利用割圆法求得π的值介于3.14163和3.14286之间。
另外他算出球的表面积是其内接最大圆面积的四倍,又导出圆柱内切球体的体积是圆柱体积的三分之二,这个定理就刻在他的墓碑上。
阿基米德研究出螺旋形曲线的性质,现今的“阿基米德螺线”曲线,就是因为纪念他而命名。另外他在《数沙者》一书中,他创造了一套记大数的方法,简化了记数的方式。
阿基米德的几何著作是希腊数学的顶峰。他把欧几里得严格的推理方法与柏拉图鲜艳的丰富想象和谐地结合在一起,达到了至善至美的境界,从而“使得往后由开普勒、卡瓦列利、费马、牛顿、莱布尼茨等人继续培育起来的微积分日趋完美”
参考资料:百度百科-阿基米德


3. 阿基米德的简介

阿基米德(公元前287年—公元前212年),伟大的古希腊哲学家、数学家、物理学  阿基米德
家、力学家,静力学和流体静力学的奠基人。出生于西西里岛的叙拉古。从小就善于思考,喜欢辩论。早年游历过古埃及,曾在亚历山大城学习。据说他住在亚历山大里亚时期发明了阿基米德式螺旋抽水机,今天在埃及仍旧使用着。第二次布匿战争时期,罗马大军围攻叙拉古,最后阿基米德不幸死在罗马士兵之手。他一生献身科学,忠于祖国,受到人们的尊敬和赞扬。

阿基米德的简介

4. 阿基米德的简介

  阿基米德【Archimedes】(约前287年—前212年),伟大的古希腊哲学家、数学家、物理学  阿基米德
  家,静力学和流体静力学的奠基人。出生于西西里岛的叙拉古。从小就善于思考,喜欢辩论。早年游历过古埃及,曾在亚历山大城学习。据说他住在亚历山大里亚时期发明了阿基米德式螺旋抽水机,今天在埃及仍旧使用着。第二次布匿战争时期,罗马大军围攻叙拉古,最后阿基米德不幸死在罗马士兵之手。他一生献身科学,忠于祖国,受到人们的尊敬和赞扬。   阿基米德的各种画像(11张)阿基米德出生在古希腊西西里岛东南端的叙拉古城。在当时古希腊的辉煌文化已经逐渐衰退,经济、文化中心逐渐转移到埃及的亚历山大城;但是另一方面,意大利半岛上新兴的罗马帝国,也正不断的扩张势力;北非也有新的国家迦太基兴起。阿基米德就是生长在这种新旧势力交替的时代,而叙拉古城也就成为许多势力的角力场所。   阿基米德的父亲是天文学家和数学家,所以他从小受家庭影响,十分喜爱数学。大概在他九岁时,父亲送他到埃及的亚历山大城念书,亚历山大城是当时世界的知识、文化中心,学者云集,举凡文学、数学、天文学、医学的研究都很发达,阿基米德在这里跟随许多著名的数学家学习,包括有名的几何学大师—欧几里德,因此奠定了他日后从事科学研究的基础。 [1]
  编辑本段科研教学
  浮力原理的发现
  关于浮力原理,有这样一个传说。   相传叙拉古赫农王让工匠替他做了一顶纯金的王冠,做好后,国王疑心工匠在金冠中掺了假,但这顶金冠确与当初交给金匠的纯金一样重。工匠到底有没有捣鬼呢?既想检验真假,  阿基米德发现浮力
  又不能破坏王冠,这个问题不仅难倒了国王,也使诸大臣们面面相觑。后来,国王请阿基米德来检验。最初,阿基米德也是冥思苦想而不得要领。一天,他在家洗澡,当他坐进澡盆里时,看到水往外溢,同时感到身体被轻轻托起。他突然悟到可以用测定固体在水中排水量的办法,来确定金冠的比重。他兴奋地跳出澡盆,连衣服都顾不得穿上就跑了出去,大声喊着“尤里卡!尤里卡!”。(Eureka,意思是“我知道了”)。   他经过了进一步的实验以后,便来到了王宫,他把王冠和同等重量的纯金放在盛满水的两个盆里,比较两盆溢出来的水,发现放王冠的盆里溢出来的水比另一盆多。这就说明王冠的体积比相同重量的纯金的体积大,密度不相同,所以证明了王冠里掺进了其他金属。   这次试验的意义远远大过查出金匠欺骗国王,阿基米德从中发现了浮力定律(阿基米德原理):物体在液体中所获得的浮力,等于他所排出液体的重量。一直到现代,人们还在利用这个原理计算物体比重和测定船舶载重量等。
  给我一个支点,我可以撬动地球
  阿基米德对于机械的研究源自于他在亚历山大城求学时期。有一天阿基米德在久旱的尼罗河边散步,看到农民提水浇地相当费力,经过思考之后他发明了一种利用螺旋作用在水管里旋转而把水  杠杆原理
  吸上来的工具,后世的人叫它做“阿基米德螺旋提水器”,埃及一直到二千年后的现在,还有人使用这种器械。这个工具成了后来螺旋推进器的先祖。当时的欧洲,在工程和日常生活中,经常使用一些简单机械,譬如:螺丝、滑车、杠杆、齿轮等,阿基米德花了许多时间去研究,发现了“杠杆原理”和“力矩”的观念,对于经常使用工具制作机械的阿基米德而言,将理论运用到实际的生活上是轻而易举的。他自己曾说:“给我一个支点和一根足够长的杠杆,我就能撬动整个地球。”   刚好海维隆王又遇到了一个棘手的问题:国王替埃及托勒密王造了一艘船,因为太大太重,船无法放进海里,国王就对阿基米德说,“你连地球都举得起来,一艘船放进海里应该没问题吧?”于是阿基米德立刻巧妙地组合各种机械,造出一架机具,在一切准备妥当后,将牵引机具的绳子交给国王,国王轻轻一拉,大船果然移动下水,国王不得不为阿基米德的天才所折服。从这个历史记载的故事里我们可以明显的知道,阿基米德极可能是当时全世界对于机械的原理与运用,了解最透彻的人。
  当代数学大师
  关于阿基米多的作品(17张)对于阿基米德来说,机械和物理的研究发明还只是次要的,他比较有兴趣而且 投注更多时间的是纯理论上的研究,尤其是在数学和天文方面。在数学方面,他利用“逼近法”算出球面积、球体积、抛物线、椭圆面积,后世的数学家依据这样的“逼近法”加以发展成近代的“微积分”。他更研究出螺旋形曲线的性质,现今的“阿基米德螺线”曲线,就是为纪念他而命名。另外他在《恒河沙数》一书中,他创造了一套记大数的方法,简化了记数的方式。   阿基米德在他的著作《论杠杆》(可惜失传)中详细地论述了杠杆的原理。有一次叙拉古国王对杠杆的威力表示怀疑,他要求阿基米德移动载满重物和乘客的一般新三桅船。阿基米德叫工匠在船的前后左右安装了一套设计精巧的滑车和杠杆。阿基米德叫100多人在大船前面,抓住一根绳子,他让国王牵动一根绳子,大船居然慢慢地滑到海中。群众欢呼雀跃,国王也高兴异常,当众宣布:“从现在起,我要求大家,无论阿斯米德说什么,都要相信他!”阿基米德还曾利用抛物镜面的聚光作用,把集中的阳光照射到入侵叙拉古的罗马船上,让它们自己燃烧起来。罗马的许多船只都被烧毁了,但罗马人却找不到失火的原因。900多年后,有位科学家按史书介绍的阿基米德的方法制造了一面凹面镜,成功地点着了距离镜子45米远的木头,而且烧化了距离镜子42米远的铝。所以,许多科技史家通常都把阿基米德看成是人类利用太阳能的始祖。
  天文研究
  他曾运用水力制作一座天象仪,球面上有日、月、星辰、五大行星,根据记载,这个天象仪不但运行精确,连何时会发生月蚀、日蚀都能加以预测。晚年的阿基米德开始怀疑地球中心学说,并猜想地球有可能绕太阳转动,这个观念一直到哥白尼时代才被人们提出来讨论。 公元三世纪末正是罗马帝国与北非迦太基帝国,为了争夺西西里岛的霸权而开战的时期。身处西西里岛的叙拉古一直都是投靠罗马,但是西元前216年迦太基大败罗马军队,叙拉古的新国王(海维隆二世的孙子继任),立即见风转舵与迦太基结盟,罗马帝国于是派马塞拉斯将军领军从海路和陆路同时进攻叙拉古,阿基米德眼见国土危急,护国的责任感促使他奋起抗敌,于是他绞尽脑汁,日以继夜的发明御敌武器。   根据一些年代较晚的记载,当时他造了巨大的起重机,可以将敌人的战舰吊到半空中,然后重重摔下使战舰在水面上粉碎;同时阿基米德也召集城中百姓手持镜子排成扇形,将阳光聚焦到罗马军舰上,烧毁敌人船只(不过,电视节目流言终结者曾经针对这个传说做过实验,结果认为这实际上几乎不可能成功);他还利用杠杆原理制造出一批投石机,凡是靠近城墙的敌人,都难逃他的飞石或标枪。这些武器弄的罗马军队惊慌失措、人人害怕,连大将军马塞拉斯都苦笑的承认:“这是一场罗马舰队与阿基米德一人的战争”、“阿基米德是神话中的百手巨人”。
  编辑本段个人著述
  阿基米德流传于世的数学著作有10余种,多为希腊文手稿。他的著作集中探讨了求积问题,主要是曲边图形的面积和曲面立方体的体积,其体例深受欧几里德《几何原本》的影响,先是设立   阿基米德的纪念雕塑(3张)若干定义和假设,再依次证明,作为数学家,他写出了《论球和圆柱》、《圆的度量》、《抛物线求积》、《论螺线》、《论锥体和球体》、《沙的计算》数学著作。作为力学家,他着有《论图形的平衡》、《论浮体》、《论杠杆》、《原理》等力学著作。   其中《论球与圆柱》,这是他的得意杰作,包括许多重大的成就。他从几个定义和公理出发,推出关于球与圆柱面积体积等50多个命题。《平面图形的平衡或其重心》,从几个基本假设出发,用严格的几何方法论证力学的原理,求出若干平面图形的重心。《数沙者》,设计一种可以表示任何大数目的方法,纠正有的人认为沙子是不可数的,即使可数也无法用算术符号表示的错误看法。《论浮体》,讨论物体的浮力,研究了旋转抛物体在流体中的稳定性。阿基米德还提出过一个“群牛问题”,含有八个未知数。最后归结为一个二次不定方程。其解的数字大得惊人,共有二十多万位!   《砂粒计算》,是专讲计算方法和计算理论的一本著作。阿基米德要计算充满宇宙大球体内的砂粒数量,他运用了很奇特的想象,建立了新的量级计数法,确定了新单位,提出了表示任何大数量的模式,这与对数运算是密切相关的。   《圆的度量》,利用圆的外切与内接96边形,求得圆周率π为:22/7>π>223/71,这是数学史上最早的,明确指出误差限度的π值。他还证明了圆面积等于以圆周长为底、半径为高的等腰三角形的面积;使用的是穷举法。   《球与圆柱》,熟练地运用穷竭法证明了球的表面积等于球大圆面积的四倍;球的体积是一个圆锥体积的四倍,这个圆锥的底等于球的大圆,高等于球的半径。阿基米德还指出,如果等边圆柱中有一个内切球,则圆柱的全面积和它的体积,分别为球表面积和体积的三分之二 。在这部著作中,他还提出了著名的“阿基米德公理”。   《抛物线求积法》,研究了曲线图形求积的问题,并用穷竭法建立了这样的结论:"任何由直线和直角圆锥体的截面所包围的弓形(即抛物线),其面积都是其同底同高的三角形面积的三分之四。"他还用力学权重方法再次验证这个结论,使数学与力学成功地结合起来。   《论螺线》,是阿基米德对数学的出色贡献。他明确了螺线的定义,以及对螺线的面积的计算方法。在同一著作中,阿基米德还导出几何级数和算术级数求和的几何方法。     阿基米德
  《平面的平衡》,是关于力学的最早的科学论著,讲的是确定平面图形和立体图形的重心问题。   《浮体》,是流体静力学的第一部专著,阿基米德把数学推理成功地运用于分析浮体的平衡上,并用数学公式表示浮体平衡的规律。   《论锥型体与球型体》,讲的是确定由抛物线和双曲线其轴旋转而成的锥型体体积,以及椭圆绕其长轴和短轴旋转而成的球型体体积。   除此以外,还有一篇非常重要的著作,是一封给埃拉托斯特尼的信,内容是探讨解决力学问题的方法。这是1906年丹麦语言学家J.L.海贝格在土耳其伊斯坦布尔发现的一卷羊皮纸手稿,原先写有希腊文,后来被擦去,重新写上宗教的文字。幸好原先的字迹没有擦干净,经过仔细辨认,证实是阿基米德的著作。其中有在别处看到的内容,也包括过去一直认为是遗失了的内容。后来以《阿基米德方法》为名刊行于世。它主要讲根据力学原理去发现问题的方法。他把一块面积或体积看成是有重量的东西,分成许多非常小的长条或薄片,然后用已知面积或体积去平衡这些“元素”,找到了重心和支点,所求的面积或体积就可以用杠杆定律计算出来。他把这种方法看作是严格证明前的一种试探性工作,得到结果以后,还要用归谬法去证明它
  编辑本段科学成就
  几何学方面
  阿基米德确定了抛物线弓形、螺线、圆形的面积以及椭球体、抛物面体等各种复杂几何体的表面积和体积的计算方法。在推演这些公式的过程中,他创立了“穷竭法”,即我们今天所说的逐步近似求极限的方法,因而被公认为微积分计算的鼻祖。他用圆内接多边形与外切多边形边数增多、面积逐渐接近的方法,比较精确的求出了圆周率。面对古希腊繁冗的数字表示方式,阿基米德还首创了记大数的方法,突破了当时用希腊字母计数不能超过一万的局限,并用它解决了许多数学难题。
  天文学方面
  阿基米德在天文学方面也有出色的成就。除了前面提到的星球仪,他还认为地球是圆球状的,并围绕着太阳旋转,这一观点比哥白尼的“日心地动说”要早一千八百年。限于当时的条件,他并没有就这个问题做深入系统的研究。但早在公元前三世纪就提出这样的见解,是很了不起的。
  重视实践
  阿基米德和雅典时期的科学家有着明显的不同,就是他既重视科学的严密性、准确性,要求对每一个问题都进行精确的、合乎逻辑的证明;又非常重视科学知识的实际应用。他非常重视试验,亲  阿基米德螺旋永动机
  自动手制作各种仪器和机械。他一生设计、制造了许多机构和机器,除了杠杆系统外,值得一提的还有举重滑轮、灌地机、扬水机以及军事上用的抛石机等。被称作“阿基米德螺旋”的扬水机至今仍在埃及等地使用。   阿基米德螺旋永动机 。   阿基米德发展了天文学测量用的十字测角器,并制成了一架测算太阳对向地球角度的仪器。他最著名的发现是浮力和相对密度原理,即物体在液体中减轻的视重,等于排去液体的重量,后来以阿基米德原理著称于世。在几何学上,他创立了一种求圆周率的方法,即圆周的周长和其直径的关系。阿基米德是第一位讲科学的工程师,在他的研究中,使用欧几里德的方法,先假设,再以严谨的逻辑推论得到结果,他不断地寻求一般性的原则而用于特殊的工程上。他的作品始终融合数学和物理,因此阿基米德成为物理学之父。   他应用杠杆原理于战争,保卫西拉斯鸠的事迹是家喻户晓的。而他也以同一原理导出部分球体的体积、回转体的体积(椭球、回转抛物面、回转双曲面),此外,他也讨论阿基米德螺线(例如:苍蝇由等速旋转的唱盘中心向外走去所留下的轨迹),圆、球体、圆柱的相关原理,其成就。阿基米德将欧几里德提出的趋近观念作了有效的运用,他提出圆内接多边形和相似圆外切多边形,当边数足够大时,两多边形的周长便一个由上,一个由下的趋近于圆周长。他先用六边形,以后逐次加倍边数,到了九十六边形,求出π的估计值介于3.14163和3.14286之间。另外他算出球的表面积是其内接最大圆面积的四倍。而他又导出圆柱内切球体的体积是圆柱体积的三分之二,这个定理就刻在他的墓碑上。
  编辑本段阿基米德之死
  据说罗马兵入城时,统帅马塞拉斯出于敬佩阿基米德的才能,曾下令不准伤害这位贤能。而阿基米德似乎并不知道城池已破,又重新沉迷于数学的深思之中。   一个罗马士兵突然出现在他面前,命令他到马塞拉斯那里去,遭到阿基米德的严词拒绝,于是阿基米德不幸死在了这个士兵的刀剑之下。   另一种说法是:罗马士兵闯入阿基米德的住宅,看见一位老人在地上埋头作几何图形(还有一种说法他在沙滩上画图),士兵将图踩坏,阿基米德怒斥士兵:"不要弄坏我的圆!"士兵拔出短剑,这位旷世绝伦的大科学家,竟如此地在愚昧无知的罗马士兵手下丧生了。   马塞拉斯对于阿基米德的死深感悲痛。他将杀死阿基米德的士兵当作杀人犯予以处决,并为阿基米德修了一座陵墓,在墓碑上根据阿基米德生前的遗愿,刻上了"圆柱容球"这一几何图形。   随着时间的流逝,阿基米德的陵墓被荒草湮没了。后来,西西里岛的会计官、政治家、哲学家西塞罗(公元前106~前43年)游历叙拉古时,在荒草发现了一块刻有圆柱容球图形的墓碑,依此辩认出这就是阿基米德的坟墓,并将它重新修复了。

5. 阿基米德的简介

阿基米德(公元前287年—公元前212年),伟大的古希腊哲学家、百科式科学家、数学家、物理学家、力学家,静态力学和流体静力学的奠基人,并且享有“力学之父”的美称,阿基米德和高斯、牛顿并列为世界三大数学家。阿基米德曾说过:“给我一个支点,我就能撬起整个地球。”
阿基米德确立了静力学和流体静力学的基本原理。给出许多求几何图形重心,包括由一抛物线和其网平行弦线所围成图形的重心的方法。阿基米德证明物体在液体中所受浮力等于它所排开液体的重量,这一结果后被称为阿基米德原理。
他还给出正抛物旋转体浮在液体中平衡稳定的判据。阿基米德发明的机械有引水用的水螺旋,能牵动满载大船的杠杆滑轮机械,能说明日食,月食现象的地球-月球-太阳运行模型。但他认为机械发明比纯数学低级,因而没写这方面的著作。阿基米德还采用不断分割法求椭球体、旋转抛物体等的体积,这种方法已具有积分计算的雏形。

扩展资料:
个人成就
1、浮力原理
浮力原理简述:物体在液体中所获得的浮力,等于它所排出液体的重量,即:F=G(式中F为物体所受浮力,G为物体排开液体所受重力)。该式变形可得
(式中ρ为被排开液体密度,g为当地重力加速度,V为排开液体体积)
相传叙拉古赫农王让工匠替他做了一顶纯金的王冠。但是在做好后,国王疑心工匠做的金冠并非纯金,工匠私吞了黄金,但又不能破坏王冠,而这顶金冠确又与当初交给金匠的纯金一样重。这个问题难倒了国王和诸位大臣。经一大臣建议,国王请来阿基米德来检验皇冠。
最初阿基米德对这个问题无计可施。有一天,他在家洗澡,当他坐进澡盆里时,看到水往外溢,突然想到可以用测定固体在水中排水量的办法,来确定金冠的体积。他兴奋地跳出澡盆,连衣服都顾不得穿上就跑了出去,大声喊着“尤里卡!尤里卡!”(ερηκα,意思是“找到了”。)
他经过了进一步的实验以后,便来到了王宫,他把王冠和同等重量的纯金放在盛满水的两个盆里,比较两盆溢出来的水,发现放王冠的盆里溢出来的水比另一盆多。这就说明王冠的体积比相同重量的纯金的体积大,密度不相同,所以证明了王冠里掺进了其他金属。
这次试验的意义远远大过查出金匠欺骗国王,阿基米德从中发现了浮力定律(阿基米德原理):物体在液体中所获得的浮力,等于它所排出液体的重量。(即广为人知的排水法)
2、杠杆原理
杠杆原理:满足下列三个点的系统,基本上就是杠杆:支点、施力点、受力点。杠杆原理亦称“杠杆平衡条件”:要使杠杆平衡,作用在杠杆上的两个力矩(力与力臂的乘积)大小必须相等。即:动力×动力臂=阻力×阻力臂,用公式可表达为:
(F1表示动力,l1表示动力臂,F2表示阻力,l2表示阻力臂)
海维隆王又遇到了一个棘手的问题:国王替埃及托勒密王造了一艘船,因为太大太重,船无法放进海里,国王就对阿基米德说:“你连地球都举得起来,把一艘船放进海里应该没问题吧?阿基米德叫工匠在船的前后左右安装了一套设计精巧的滑车和杠杆。阿基米德叫100多人在大船前面,抓住一根绳子,他让国王牵动一根绳,大船居然慢慢地滑到海中。国王异常高兴,当众宣布:“从现在起,我要求大家,无论阿基米德说什么,都要相信他!”
3、机械应用
阿基米德对于机械的研究源自于他在亚历山大城求学时期,有一天阿基米德在久旱的尼罗河边散步,看到农民提水浇地相当费力,经过思考之后他发明了一种利用螺旋作用在水管里旋转而把水吸上来的工具,后世的人叫它做“阿基米德螺旋提水器”。埃及一直到二千年后的现代,还有人使用这种器械。这个工具成了后来螺旋推进器的先祖。
阿基米德非常重视试验,一生设计、制造了许多仪器和机械,值得一提的有举重滑轮、灌地机、扬水机以及军事上用的抛石机等。
当时的欧洲,在工程和日常生活中,经常使用一些简单机械,譬如:螺丝、滑车、杠杆、齿轮等,阿基米德花了许多时间去研究,发现了“杠杆原理”和“力矩”的观念,对于经常使用工具制作机械的阿基米德而言,将理论运用到实际的生活上是轻而易举的。阿基米德极可能是当时全世界对于机械的原理与运用了解最透彻的人。
阿基米德和雅典时期的科学家有着明显的不同,就是他既重视科学的严密性、准确性,要求对每一个问题都进行精确的、合乎逻辑的证明;又非常重视科学知识的实际应用。
4、数学大师
阿基米德在数学上也有着极为光辉灿烂的成就,特别是在几何学方面。
阿基米德的数学思想中蕴涵微积分,阿基米德的《方法论》中已经“十分接近现代微积分”,这里有对数学上“无穷”的超前研究,贯穿全篇的则是如何将数学模型进行物理上的应用。
他所缺的是没有极限概念,但其思想实质却伸展到17世纪趋于成熟的无穷小分析领域里去,预告了微积分的诞生。
阿基米德将欧几里德提出的趋近观念作了有效的运用。他利用“逼近法”算出球面积、球体积、抛物线、椭圆面积,后世的数学家依据这样的“逼近法”加以发展成近代的“微积分”。阿基米德还利用割圆法求得π的值介于3.14163和3.14286之间。
另外他算出球的表面积是其内接最大圆面积的四倍,又导出圆柱内切球体的体积是圆柱体积的三分之二,这个定理就刻在他的墓碑上。
阿基米德研究出螺旋形曲线的性质,现今的“阿基米德螺线”曲线,就是因为纪念他而命名。另外他在《数沙者》一书中,他创造了一套记大数的方法,简化了记数的方式。
阿基米德的几何著作是希腊数学的顶峰。他把欧几里得严格的推理方法与柏拉图鲜艳的丰富想象和谐地结合在一起,达到了至善至美的境界,从而“使得往后由开普勒、卡瓦列利、费马、牛顿、莱布尼茨等人继续培育起来的微积分日趋完美”。
5、天文研究
阿基米德发展了天文学测量用的十字测角器,并制成了一架测算太阳对向地球角度的仪器。
阿基米德还曾经运用水力制作一座天象仪,球面上有日、月、星辰、五大行星。根据记载,这个天象仪不但运行精确,连何时会发生月蚀、日蚀都能加以预测。
阿基米德还认为地球可能是圆的。晚年阿基米德开始怀疑地球中心学说,并猜想地球有可能绕太阳转动,这个猜想一直到哥白尼时代才被人们提出来讨论。
人物评价
阿基米德对数学和物理的发展做出了巨大的贡献,为社会进步和人类发展做出了不可磨灭的影响,即使牛顿和爱因斯坦也都曾从他身上汲取过智慧和灵感,他是“理论天才与实验天才合于一人的理想化身”,文艺复兴时期的达芬奇和伽利略等人都拿他来做自己的楷模。
参考资料:百度百科-阿基米德(古希腊哲学家、数学家、物理学家)

阿基米德的简介

6. 阿基米德简介

阿基米德简介:
阿基米德(公元前287年—公元前212年),伟大的古希腊哲学家、百科式科学家、数学家、物理学家、力学家,静态力学和流体静力学的奠基人,并且享有“力学之父”的美称,阿基米德和高斯、牛顿并列为世界三大数学家。
阿基米德曾说过:“给我一个支点,我就能撬起整个地球。”
阿基米德确立了静力学和流体静力学的基本原理。给出许多求几何图形重心,包括由一抛物线和其网平行弦线所围成图形的重心的方法。阿基米德证明物体在液体中所受浮力等于它所排开液体的重量,这一结果后被称为阿基米德原理。
他还给出正抛物旋转体浮在液体中平衡稳定的判据。阿基米德发明的机械有引水用的水螺旋,能牵动满载大船的杠杆滑轮机械,能说明日食,月食现象的地球-月球-太阳运行模型。
但他认为机械发明比纯数学低级,因而没写这方面的著作。阿基米德还采用不断分割法求椭球体、旋转抛物体等的体积,这种方法已具有积分计算的雏形。

扩展资料:
阿基米德在几何学方面的成就:

阿基米德在数学上也有着极为光辉灿烂的成就,特别是在几何学方面。
阿基米德的数学思想中蕴涵微积分,阿基米德的《方法论》中已经“十分接近现代微积分”,这里有对数学上“无穷”的超前研究,贯穿全篇的则是如何将数学模型进行物理上的应用。
他所缺的是没有极限概念,但其思想实质却伸展到17世纪趋于成熟的无穷小分析领域里去,预告了微积分的诞生。
阿基米德将欧几里德提出的趋近观念作了有效的运用。他利用“逼近法”算出球面积、球体积、抛物线、椭圆面积,后世的数学家依据这样的“逼近法”加以发展成近代的“微积分”。阿基米德还利用割圆法求得π的值介于3.14163和3.14286之间。
另外他算出球的表面积是其内接最大圆面积的四倍,又导出圆柱内切球体的体积是圆柱体积的三分之二,这个定理就刻在他的墓碑上。
阿基米德研究出螺旋形曲线的性质,现今的“阿基米德螺线”曲线,就是因为纪念他而命名。另外他在《数沙者》一书中,他创造了一套记大数的方法,简化了记数的方式。
阿基米德的几何著作是希腊数学的顶峰。他把欧几里得严格的推理方法与柏拉图鲜艳的丰富想象和谐地结合在一起,达到了至善至美的境界,从而“使得往后由开普勒、卡瓦列利、费马、牛顿、莱布尼茨等人继续培育起来的微积分日趋完美”
参考资料:百度百科-阿基米德


7. 阿基米德简介

 阿基米德简介阿基米德(Archimedes,公元前287---前212)是数学历史上最伟大的数学家之一,近代数学史 家贝尔(E.T.Bell,1883---1960)说:“任何一张列出有史以来三个最伟大的数学家的名单中, 必定包括阿基米德,另外两个通常是牛顿和高斯.不过以他们的丰功伟绩和所处的时代背景来比, 拿他们影响当代和后世的深邃久远来比较,还应首推阿基米德.”阿基米德的名字在他同时代的 人们中成为贤明的象征,他会用简单的方法解最难的问题.古希腊著名的作家和历史学家普鲁塔 克(Plutarch,公元前1 世纪)说:把这样困难的题目解决得如此简单和明白,在数学里没有听到 过,假如有谁尝试一下自己解这些题目,他会什么也得不到.但是,如果他熟悉了阿基米德的解 法,那么他就会立刻得出这样的印象,这个解法他自己也会找到.阿基米德用如此容易和简明的 方法把我们引向目的. 阿基米德出生于意大利半岛南端西西里岛的叙拉古,他的父亲是天文学家,曾撰写过有关太 阳和月球直径的文章.阿基米德早年在亚历山大学习,以后和亚历山大的学者一直保持联系. 阿基米德终生倾心对科学的研究,常常沉浸于忘我的思考之中,普鲁塔克曾写道:阿基米德 废寝忘食,完全忽视关心自己的身体.经常要强迫他去洗澡,在洗澡中,擦上香油膏,然而就在 这时,他用手指在自己擦上油膏的身体上画几何图形.古罗马建筑师维脱罗卫(Vitruvius,公元 世纪)记述的阿基米德发现浮体规律的情景,令人感叹不已.有一次叙拉古的亥厄洛(Hieron)王让人制造纯金的皇冠.做成后国王怀疑是否完全用纯金制成,便请素称多能的阿基米德来鉴 定.阿基米德曾长时间地思考解决的方法,正在苦闷之中,他到公共浴池洗澡,当浸入装满水的 浴盆中时,水漫溢到盆外,而身体重量顿觉减轻.于是,他忽然想到不同质料的东西,虽然重量 相同,但因体积不同,排去的水必不相等.根据这一道理,不仅可以判断皇冠是否掺有杂质,而 且知道偷去黄金的重量.这次成功的发现使阿基米德大吃一惊,他光着身子跑出浴池,大声喊: “我找到了”.经过仔细地实验,他终于发现了流体静力学的基本原理:“阿基米德原理”--- 物体在液体中减轻的重量,等于排去液体的重量. 在阿基米德一生的最后几年中,表现出了真挚的爱国热情.他为祖国的安危献出了自己全部 力量和智慧.当罗马军队首领马塞拉斯率领大军进攻叙拉古时,阿基米德发挥了自己的聪明才智, 制造新的机械对抗罗马当时先进的军事设施.他制造了许多武器,做好在任何情况下击退敌人的 准备.若敌人离城市很远,便用巨大的远射程投射机器,发射大量的“重炮弹”和“火箭”阿基米德简介,击 败敌人的战船.当阿基米德发觉炮弹落得太远,不能击中船只时,便使用了适合较小距离的投射 机器.这样,使罗马军队胆战心惊,以致他们无力再向前推进.希腊文献记载,当罗马兵船靠近 城下,阿基米德用巨大火镜反射日光使兵船焚烧.另一种说法是他用投火器,将燃烧着的东西弹 出去,烧毁敌人的战船.总之,阿基米德竭尽全力,发明各种新式器械,给罗马军队以沉重的打 击,为保卫祖国作出了重大贡献.后来,终因叛徒的出卖,叙拉古城失守了.一种说法是阿基米 德似乎并不知道城池已破,仍沉迷于数学的深思,埋头画几何图形.当一个罗马士兵冲到他面前 时,阿基米德严肃地说:“走开,不要动我的图.”罗马士兵听了,觉得受到污辱,就拔剑刺死 了阿基米德.终年75 岁.根据阿基米德生前遗嘱,在墓碑上刻着球内切于圆柱的图形,象征着 他特别珍视的发明. 阿基米德在数学中做出很多贡献,他的许多著作的手稿一直保存到现在.一些数学史家都把 他的原著译成现代文字.例如,希思的英译本,兹瓦利那的德译本,维尔埃斯克(P.Ver.Ee -cke)的法译本,还有荷兰的迪克特赫斯(E.J.Dijksterhuis)的名著《阿基米德》.其著作涉 及的范围很广,也说明他对前人在数学中的一切发现具有渊博的知识.保存下来的阿基米德著作 多半是几何内容的著作,也有一部分力学和计算问题的著作.主要是《论球与圆柱》(On Cylinder),《论抛物线求积法》(On Quadrature Parabola),《圆的度量》(Measurement Circle),《论螺线》(OnSpirals),《论平板的平衡》(OnPlane ConoidsSpheroids),《砂粒计算》(The Sand Reckoner),《论方法》(On Method)(阿基米德给厄拉托塞的书信中,关于几何学的某些定理), 《论浮体》(On Floating Bodies),《引理》.在这些著作中的几何方面,他补充了许多关于平 面曲线图形求积法和确定曲面所包围体积方面的独创研究.在这些研究中,他预见到了极微分割 的概念,这个观念在17 世纪的数学中起到了重要作用,其本身就是微积分的先声,但缺乏极限 概念.阿基米德的求积法蕴育着积分思想的萌芽,利用这种方法,发现了定理 阿基米德研究了曲线图形求积的问题,并且用穷竭法建立了这样的结果:“任何由直线和直 角圆锥体的截面所包围的弓形(即抛物线), 下面是阿基米德的简略证明,可以揭示他的研究方法.AQ 是一抛物线弓形,抛物线顶点为A(如图3.14).Q 处平分,作图中所示的各线段就可完成图形.现在,Q =3AC.采用同样方法重复把Q 平分就可证明(1)式的右方加上等.在这些线上不断这样做下去,就可证明抛物线弓形面积是 这里是指AQ 然而阿基米德没有求极限的观念,他是用归谬法来证明他的结论的.这种证法的要点是,如果所求面积不等于给定的面积S,它就一定同时大于它又小于它.而这是不合理的,由此,推知 抛物线弓形的面积等于 阿基米德在《圆的度量》(Measurement acircle)一文中,利用外切与内接96边形求得 圆周率π 史上最早给出的关于圆周率的误差估计.在进行证明时,阿基米德避免了借助无穷小量这个概念,因为这个概念一直是希腊人所怀疑 的.他考虑了内接多边形和外切多边形.他确立这个基本原理的方法是说明并证明:“给定二不 等量,则不论大量与小量之比如何接近1,都有可能:(1)求出两条直线,使得较长的与较短的之 比更小(大于1);(2)作一圆或扇形的相似外切多边形和内接多边形,使得外切多边形的周长或面 积,与内接多边形的周长或面积之比小于给定的比”.然后就像欧几里得所做过的那样,他证明 如果不断把边数加倍,最后会留下一些弓形,它们加起来比任何指定的面积都要小.阿基米德对 此做了一点补充,即指出若把外切多边形的边数增加到足够多,就能使多边形的面积与圆的面积 之差,小于任何给定的面积. 阿基米德还研究了螺线,撰写了《论螺线》一书,有人认为,从某种意义来说,这是阿基米 德对数学的全部贡献中最出色的部分.许多学者都在他的作螺线切线的方法中预见到了微积分方 法.值得称道的是,他用运动的观点定义数学对象,如果一条射线绕其端点匀速旋转,同时有一 动点从端点开始沿射线作匀速运动,那么这个点就描出一条螺线.这种螺线后来称为“阿基米德 螺线”.螺线有一个基本性质,把矢径的长度和初始线从初始位置旋转时所通过的角度联系起来.此 基本性质是以命题14 出现的,现在都以r=aθ 这个方程来表示之.阿基米德然后证明了,在第 一个周转和初始线之间所包围的面积,亦即在矢径O 一直线在螺线的末端与螺线相切’并从固定端另作一直线垂直于旋转一周后返回到原处的直线,以致与切线相遇,我认为这样做成的与切线相遇的直线,就等于这个圆的圆周”.此即为《论螺 线》一书中命题24. 阿基米德在《砂粒计算》(论数砂)著作中,设计出了一种表示大数的计数系统,能表示超出 当时希腊计数系统所能表示的数.在阿基米德之前,希腊人的计算扩大到不超过10000,并将 10000 叫做无数之多.阿基米德把无数之多当作一种新的单位,把无数之多引入计算,并且提出 了更高位的单位.据说阿基米德向希腊数学家们提出过一个“群牛问题”.实质上要从7 个方程 中,得出8 个正整数解,最后归结为一个二次不定方程 这个方程的解的位数相当大.《引理》(Liber Assumptorum)一书是阿基米德最早的著作阿基米德简介,其中含有15 个命题,例如: 命题2,如果做正方形的外接圆与内切圆,那么外接圆的面积等于内切圆面积的两倍. 命题3,如果在圆内作两条相交成直角的弦,那么由交点分成的4 条线段的平方和等于直径 的平方. 在《论浮体》(on Floating Bodies)一文中,阿基米德首先给出了比重比流体小的物体、相 同的物体、大的物体浮力的法则,这确实是一部具有时代意义的杰作. 阿基米德在数学的创作中,运用了很多独到的方法.尤其他根据力学的原理发现问题之法, 被整理成《阿基米德方法》(The Method L.Heiberg)在君士坦丁堡(Constantinople,现称伊斯坦布尔(lstanbul),土耳其最大城市)发现阿基米德写给 厄拉托塞(Eratosthenes,约公元前274---194 年)的信以及阿基米德其他著作的传抄本,记述 了阿塞米德结合静力学和流体力学研究大量的关于计算长度、面积、体积和重心等有关几何问 题.其要点是:体积是由面积构成,面积是由彼此平行的直线构成.每条直线都有重量,而且与 它们的长度成正比.因而可以把问题归结于使未知的几何图形与已知的几何图形相互平衡以求重 心,其中利用杠杆原理确定抛物弓形面积,球和球冠面积,旋转双曲体体积就是例证.实际上, 这是通往积分的较快的迂回之路.阿基米德信心百倍地预言:“一旦这种方法确立之后,有些人 或者是我的同代人,或者是我的后继者,就会利用这个方法又发现另外一些定理,而这些定理是 我所预想不到的.”阿基米德为了能在数学中确立发现问题的方法,并给出了逻辑证明.阿基米 德的预言,终于在近2000 年之后,得以实现.18 世纪,丹尼尔伯努利(Da-niel Bernoulli) 由物理知识推测到了三角级数形式的弦振动的微分方程的一般解.19 世纪中叶黎曼 (G.F.B.Riemann)由电学理论确定在每一个封闭的黎曼曲面上都存在着通常有解的代数函数. 阿基米德作出的所有结论都是在没有代数符号的情况下获得的,使证明的过程颇为复杂,但 他以惊人的独创性,将熟练的计算技巧和严格的证明融为一体,并将抽象的理论与工程技术的具 体应用紧密结合起来,将希腊数学推向一个新阶段. 由于阿基米德在科学研究中,注意在实践中洞察事物的各种现象,并透过现象认清本质,然 后通过严格的论证,使经验事实上升为系统的理论,因此,阿基米德在天文学、力学等方面也作 出了重大贡献. 阿基米德一生酷爱天文学,但遗憾的是他关于天文学的著作没有保留下来,根据希达克斯 (Syntaxis)的记载,为了进行天文观测,阿基 比较精确的.并用仪器测量太阳的视角直径等,据说阿基米德撰写过《天文仪器的制作》(On spheres)一书,现已失传.总之,阿基米德的所有名著都以精确和严谨著称.正如数学史家希思所说,“这些论著毫无 例外地都是数学论文的纪念碑.解题计划的逐步启示,命题次序的巧妙排列,严格排除与目的没 有直接关联的一切东西,对整体的润饰---其完美性所给人的印象是如此之深,以致在读者心中能 产生一种近乎敬畏的感情”.
   

阿基米德简介

8. 阿基米德简介。

中文名
阿基米德
外文名
Archimedes
国    籍
古希腊
出生地
叙拉古
出生日期
公元前287年
逝世日期
公元前212年
职    业
科学家、数学家、物理学家
主要成就
几何体表面积和体积的计算方法 
发现浮力定理、杠杆原理
阿基米德(公元前287年—公元前212年),伟大的古希腊哲学家、百科式科学家、数学家、物理学家、力学家,静态力学和流体静力学的奠基人,并且享有“力学之父”的美称,阿基米德和高斯、牛顿并列为世界三大数学家。[1]  阿基米德曾说过:“给我一个支点,我就能撬起整个地球。”
阿基米德确立了静力学和流体静力学的基本原理。给出许多求几何图形重心,包括由一抛物线和其网平行弦线所围成图形的重心的方法。阿基米德证明物体在液体中所受浮力等于它所排开液体的重量,这一结果后被称为阿基米德原理。他还给出正抛物旋转体浮在液体中平衡稳定的判据。阿基米德发明的机械有引水用的水螺旋,能牵动满载大船的杠杆滑轮机械,能说明日食,月食现象的地球-月球-太阳运行模型。但他认为机械发明比纯数学低级,因而没写这方面的著作。阿基米德还采用不断分割法求椭球体、旋转抛物体等的体积,这种方法已具有积分计算的雏形。
最新文章
热门文章
推荐阅读